Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks.
نویسندگان
چکیده
We present a combined epidemiological and economic model for control of diseases spreading on local and small-world networks. The disease is characterized by a pre-symptomatic infectious stage that makes detection and control of cases more difficult. The effectiveness of local (ring-vaccination or culling) and global control strategies is analysed by comparing the net present values of the combined cost of preventive treatment and illness. The optimal strategy is then selected by minimizing the total cost of the epidemic. We show that three main strategies emerge, with treating a large number of individuals (global strategy, GS), treating a small number of individuals in a well-defined neighbourhood of a detected case (local strategy) and allowing the disease to spread unchecked (null strategy, NS). The choice of the optimal strategy is governed mainly by a relative cost of palliative and preventive treatments. If the disease spreads within the well-defined neighbourhood, the local strategy is optimal unless the cost of a single vaccine is much higher than the cost associated with hospitalization. In the latter case, it is most cost-effective to refrain from prevention. Destruction of local correlations, either by long-range (small-world) links or by inclusion of many initial foci, expands the range of costs for which the NS is most cost-effective. The GS emerges for the case when the cost of prevention is much lower than the cost of treatment and there is a substantial non-local component in the disease spread. We also show that local treatment is only desirable if the disease spreads on a small-world network with sufficiently few long-range links; otherwise it is optimal to treat globally. In the mean-field case, there are only two optimal solutions, to treat all if the cost of the vaccine is low and to treat nobody if it is high. The basic reproduction ratio, R(0), does not depend on the rate of responsive treatment in this case and the disease always invades (but might be stopped afterwards). The details of the local control strategy, and in particular the optimal size of the control neighbourhood, are determined by the epidemiology of the disease. The properties of the pathogen might not be known in advance for emerging diseases, but the broad choice of the strategy can be made based on economic analysis only.
منابع مشابه
Efficient Control of Epidemics Spreading on Networks: Balance between Treatment and Recovery
We analyse two models describing disease transmission and control on regular and small-world networks. We use simulations to find a control strategy that minimizes the total cost of an outbreak, thus balancing the costs of disease against that of the preventive treatment. The models are similar in their epidemiological part, but differ in how the removed/recovered individuals are treated. The d...
متن کاملEffect of Small-World Networks on Epidemic Propagation and Intervention
The small-world network, characterized by special structural properties of high connectivity and clustering, is one of the highlights in recent advances in network science and has the potential to model a variety of social contact networks. In an attempt to better understand how these structural properties of small-world networks affect epidemic propagation and intervention, this article uses a...
متن کاملComparative Analysis of the Effectiveness of Three Immunization Strategies in Controlling Disease Outbreaks in Realistic Social Networks
The high incidence of emerging infectious diseases has highlighted the importance of effective immunization strategies, especially the stochastic algorithms based on local available network information. Present stochastic strategies are mainly evaluated based on classical network models, such as scale-free networks and small-world networks, and thus are insufficient. Three frequently referred s...
متن کاملSmall world yields the most effective information spreading
Spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information ...
متن کاملCost-aware Topology Customization of Mesh-based Networks-on-Chip
Nowadays, the growing demand for supporting multiple applications causes to use multiple IPs onto the chip. In fact, finding truly scalable communication architecture will be a critical concern. To this end, the Networks-on-Chip (NoC) paradigm has emerged as a promising solution to on-chip communication challenges within the silicon-based electronics. Many of today’s NoC architectures are based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 9 66 شماره
صفحات -
تاریخ انتشار 2012